
A Study of Water Potability
An attempt on understanding what makes water potable based on 10 different numerical features. The water_potability.csv file contains water quality metrics for 3276 different water bodies and It's source can be found here:

https://www.kaggle.com/datasets/adityakadiwal/water-potability?datasetId=1292407&sortBy=voteCount

Foto de Daniel Sinoca en Unsplash.

Feature Definitions:

1. pH value:
PH is an important parameter in evaluating the acid–base balance of water. It is also the indicator of acidic or alkaline condition of water status. WHO has recommended maximum permissible limit of pH from 6.5

to 8.5. The current investigation ranges were 6.52–6.83 which are in the range of WHO standards.

2. Hardness:
Hardness is mainly caused by calcium and magnesium salts. These salts are dissolved from geologic deposits through which water travels. The length of time water is in contact with hardness producing

material helps determine how much hardness there is in raw water. Hardness was originally defined as the capacity of water to precipitate soap caused by Calcium and Magnesium.

3. Solids (Total dissolved solids - TDS):
Water has the ability to dissolve a wide range of inorganic and some organic minerals or salts such as potassium, calcium, sodium, bicarbonates, chlorides, magnesium, sulfates etc.

These minerals produced un-wanted taste and diluted color in appearance of water. This is the important parameter for the use of water. The water with high TDS value indicates that water is highly mineralized. Desirable limit

for TDS is 500 mg/l and maximum limit is 1000 mg/l which prescribed for drinking purpose.

4. Chloramines:
Chlorine and chloramine are the major disinfectants used in public water systems. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chlorine levels up to 4

milligrams per liter (mg/L or 4 parts per million (ppm)) are considered safe in drinking water.

5. Sulfate:
Sulfates are naturally occurring substances that are found in minerals, soil, and rocks. They are present in ambient air, groundwater, plants, and food. The principal commercial use of sulfate is in the chemical

industry. Sulfate concentration in seawater is about 2,700 milligrams per liter (mg/L). It ranges from 3 to 30 mg/L in most freshwater supplies, although much higher concentrations (1000 mg/L) are found in some geographic

locations.

6. Conductivity:
Pure water is not a good conductor of electric current rather’s a good insulator. Increase in ions concentration enhances the electrical conductivity of water. Generally, the amount of dissolved solids in water

determines the electrical conductivity. Electrical conductivity (EC) actually measures the ionic process of a solution that enables it to transmit current. According to WHO standards, EC value should not exceeded 400 μS/cm.

7. Organic_carbon:
Total Organic Carbon (TOC) in source waters comes from decaying natural organic matter (NOM) as well as synthetic sources. TOC is a measure of the total amount of carbon in organic compounds in

pure water. According to US EPA < 2 mg/L as TOC in treated / drinking water, and < 4 mg/Lit in source water which is use for treatment.

8. Trihalomethanes:
THMs are chemicals which may be found in water treated with chlorine. The concentration of THMs in drinking water varies according to the level of organic material in the water, the amount of chlorine

required to treat the water, and the temperature of the water that is being treated. THM levels up to 80 ppm is considered safe in drinking water.

9. Turbidity:
The turbidity of water depends on the quantity of solid matter present in the suspended state. It is a measure of light emitting properties of water and the test is used to indicate the quality of waste discharge with

respect to colloidal matter. The mean turbidity value obtained for Wondo Genet Campus (0.98 NTU) is lower than the WHO recommended value of 5.00 NTU.

10. Potability:
Indicates if water is safe for human consumption where 1 means Potable and 0 means Not potable.

0.1 Import Libraries & Packages

ph Hardness Solids Chloramines Sulfate Conductivity Organic_carbon Trihalomethanes Turbidity Potability

0 NaN 204.890455 20791.318981 7.300212 368.516441 564.308654 10.379783 86.990970 2.963135 0

1 3.716080 129.422921 18630.057858 6.635246 NaN 592.885359 15.180013 56.329076 4.500656 0

2 8.099124 224.236259 19909.541732 9.275884 NaN 418.606213 16.868637 66.420093 3.055934 0

3 8.316766 214.373394 22018.417441 8.059332 356.886136 363.266516 18.436524 100.341674 4.628771 0

4 9.092223 181.101509 17978.986339 6.546600 310.135738 398.410813 11.558279 31.997993 4.075075 0

1.0 Exploratory Data Analysis

1.1 Quick Descriptive Statistics

We will be exploring general characteristics for the data. Things like type and name of each variable, missing values, dimensions of the data, and more.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 3276 entries, 0 to 3275

Data columns (total 10 columns):

 #   Column           Non-Null Count  Dtype  

---  ------           --------------  -----  

 0   ph               2785 non-null   float64

 1   Hardness         3276 non-null   float64

 2   Solids           3276 non-null   float64

 3   Chloramines      3276 non-null   float64

 4   Sulfate          2495 non-null   float64

 5   Conductivity     3276 non-null   float64

 6   Organic_carbon   3276 non-null   float64

 7   Trihalomethanes  3114 non-null   float64

 8   Turbidity        3276 non-null   float64

 9   Potability       3276 non-null   int64  

dtypes: float64(9), int64(1)

memory usage: 256.1 KB


ph Hardness Solids Chloramines Sulfate Conductivity Organic_carbon Trihalomethanes Turbidity Potability

count 2785.000000 3276.000000 3276.000000 3276.000000 2495.000000 3276.000000 3276.000000 3114.000000 3276.000000 3276.000000

mean 7.080795 196.369496 22014.092526 7.122277 333.775777 426.205111 14.284970 66.396293 3.966786 0.390110

std 1.594320 32.879761 8768.570828 1.583085 41.416840 80.824064 3.308162 16.175008 0.780382 0.487849

min 0.000000 47.432000 320.942611 0.352000 129.000000 181.483754 2.200000 0.738000 1.450000 0.000000

25% 6.093092 176.850538 15666.690297 6.127421 307.699498 365.734414 12.065801 55.844536 3.439711 0.000000

50% 7.036752 196.967627 20927.833607 7.130299 333.073546 421.884968 14.218338 66.622485 3.955028 0.000000

75% 8.062066 216.667456 27332.762127 8.114887 359.950170 481.792304 16.557652 77.337473 4.500320 1.000000

max 14.000000 323.124000 61227.196008 13.127000 481.030642 753.342620 28.300000 124.000000 6.739000 1.000000

Percentage of missing values for each variable:

ph                 0.149878

Hardness           0.000000

Solids             0.000000

Chloramines        0.000000

Sulfate            0.238400

Conductivity       0.000000

Organic_carbon     0.000000

Trihalomethanes    0.049451

Turbidity          0.000000

Potability         0.000000

dtype: float64

We can see how each variable has a different rnge of values when describing the potability of a body of water. This is important because it will determine the neccesary transformations on the data to create an accurate

predictive model. It is important to note that the variables: ph, sulfate, and trihalomethanes present a significant amount of missing values that will need to be addressed.

1.2 Data Distributions

By visualazing the distributions of each independent variables we are able to hve a more accurate understanding of the relationship between the respective dependent variable. We will make two plots: one for the entire data,

and the other for each variable conditioned on its label.

We can see that most variables are already normally distributed with solids having a slight skew to the right. This is important to know when deciding which predictive model to use as some of them make normality of

independent variables an assumption to work. We will now visualize the conditional probability.

We do this to gain some insights between the dependent and independent variables. We can see how some variables conditional distribution remains the same regardless of class, but others change slightly like ph, sulfate, or

hardiness. Overall the differences seem to be small which might represent a challenge when trying to predict new data.

Another way to gain insight on the variables relationship and a good method to check for multicollinearity is to do a correlation plot.

In it we can see the correlation between all the variables. In this case we cn see that there are no strong relationships in any of them. The good side of this is that we don't have to worry about the model being affected by

linear relationships between independent variables, the bad is that it might be hard predicting the test datas class due to the lack of relationship with the dependent variable.

1.3 Outlier Detection

We will use boxplots for each variable to have a visual intuition for ech variables deviations. This will help gain insight on the necessary transformations for modeling.

We can see that a lot of variables present a significant number of outliers. We will either need to make transformations for each variable or select a model robust to outliers.

1.4 Check Data for Imbalance & Split Into Train/Test

0    1998

1    1278

Name: Potability, dtype: int64

We can see how there exists a slight imbalance between the 2 classes in our data, this might be important to take into account when building our model.

We will now split our data to have a training and test set. We will do this by first separating it the data points with missing values and splitting the rest. We will then combine the newly formed training set with the data points

with missing values. This will prevent data leakage into the test set.

ph Hardness Solids Chloramines Sulfate Conductivity Organic_carbon Trihalomethanes Turbidity

904 5.949519 160.442631 16898.808297 6.045906 367.328542 451.012788 16.359951 62.368234 4.072198

1729 5.345345 238.510230 10315.353973 7.822601 281.771707 496.350875 12.624613 87.342833 2.362886

3047 5.039407 194.404170 19336.608073 7.194765 339.232126 515.807182 10.728669 61.129517 3.126956

2206 8.801934 225.895468 23659.211520 2.458609 408.417866 446.992465 14.340818 42.800911 3.769832

2131 7.191962 228.409943 15395.469082 7.398603 334.777619 294.915584 13.932293 50.748365 4.102719

2.0 Data Transformation
We will now make some of the necessary transformations to the data needed to build an optimized model. We will start by rejoining the missing data with the training dataset as well as confirming the missing values in our

training data.

Percentage of missing values for each variable:

ph                 18.375749

Hardness            0.000000

Solids              0.000000

Chloramines         0.000000

Sulfate            29.229042

Conductivity        0.000000

Organic_carbon      0.000000

Trihalomethanes     6.062874

Turbidity           0.000000

Potability          0.000000

dtype: float64

2.1 Addressing Missing Values

We will impute the missing values using the mean for each variable. This seems to be acceptable given the distribution of each.

Number of missing values:

ph                 0

Hardness           0

Solids             0

Chloramines        0

Sulfate            0

Conductivity       0

Organic_carbon     0

Trihalomethanes    0

Turbidity          0

Potability         0

dtype: int64

2.2 Separating Training Data

Finally we will separate our dependent value and output the value count for the training and test data in preparation of building our model.

Training Data Class Distribution:

0    1643

1    1029

Name: Potability, dtype: int64 


Test Data Class Distribution:

0    355

1    249

Name: Potability, dtype: int64


2.3 (Optional) Data Augmentation

In case we wanted to perform data augmentation there are methods that allows us to balance our data. It is important to note that this does not always help boosting the results of our model due to the nature of creating

artificial data, but at least it is an option to consider for some cases.

0    1643

1    1643

Name: Potability, dtype: int64

3.0 Model Building & Validation

Due to the existance of outliers and we will be using random forest and extreme gradient boosting as possible models to make our prediction. Both are robust to outliers and provide a good general approach. We will also

perform cross-validation on the training set to find which one is better.

AUC score for XGboost:

0.8257679324469344 {'n_estimators': 50}


AUC score for Random Forest:

0.8352921465314781 {'n_estimators': 700}


Out of the two approaches, random forest proved to be the best. We will now be using it to predict our test data and evaluate our results.

4.0 Results

4.1 Building & Fitting our Optimal Model

We will now build our model and predict our test data.

4.2 Model Result Metrics

By using the metrics object from our helper file, we will able to get our metrics in a fast and efficient way.

              precision    recall  f1-score   support


           0       0.71      0.86      0.78       355

           1       0.72      0.51      0.60       249


    accuracy                           0.72       604

   macro avg       0.72      0.69      0.69       604

weighted avg       0.72      0.72      0.71       604


Looking at our classification report we can see that we have achieved a 72% accuracy. As we saw in our exploratory stage, this might be due to the independent variables not having an explanatory relationship with the

dependent variable. Nonetheless, the model could still be improved if more data is collected or more in-depth transformations are made.

Other important metrics to look at are recall and precision for the potable class of water. In this case we need to prioritize precision as the cost of predicting a non-potable source of water as potable could have adverse effects

on the health of however decides to drink that water. In this case that metric could be improved.

4.21 ROC Curve

The AUC score ends up being 0.72 for both classes, same performance as the precision and accuracy of our model.

4.22 Confusion Matrix

Finally, we are able to visualize our confusion matrix. Showing the overral performance on our test data.

5.0 Conclusions
The data has proven to be a challenge due to the lack of relationship between the independent variables and the class of each data point. The number of missing values and outliers has also proven to be a factor in reducing

the accuracy of our results. Nonetheless, a 72% accuracy has been achieved which proves to be a good initial result which can be increased by taking a number of measures. Overall, this exercise serves as good practice in

the exploration of data for predictive purposes, and demonstrates that not always there will be a perfect result when building statistical models.

5.1 Variable Importance

Due to the high imputation number of values in the sulfate and ph variables, this might have artificially inflated its importance when plotting the following graph. Nonetheless, it still provides a good general insight on what

should be taken into account when trying to determine water potability.

Text(0.5, 1.0, 'Feature Explanation of Potability')

In [1]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

plt.rcParams["figure.figsize"] = (20,10)

import seaborn as sns



from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split, GridSearchCV

from sklearn.pipeline import Pipeline


In [2]: # set seed

seed = 42

np.random.seed(seed)



# Import and show data.

file = 'data/water_potability.csv'

data = pd.read_csv(file)

data.head()


Out[2]:

In [3]: # Show data types, nulls, features, and dimensions.

data.info()


In [4]: data.describe()


Out[4]:

In [5]: # Percentage of missing values.

print('Percentage of missing values for each variable:')

data.isnull().sum()/data.shape[0]


Out[5]:

In [6]: # Plot Features Distributions

fig, axs = plt.subplots(3,3)

fig.suptitle('Distribution of Each Feature', fontsize=16)

for i in range(data.shape[1]-1):

    plt.subplot(3,3,i+1)

    sns.kdeplot(data[data.columns[i]])

    


In [7]: # Plot Features Distributions

fig, axs = plt.subplots(3,3)

fig.suptitle('Distribution by Potability (Red: Non-potable, Green: Potable)', fontsize=16)

df_pot = data[data['Potability']==1]

df_non_pot = data[data['Potability']==0]



for i in range(data.shape[1]-1):

    plt.subplot(3,3,i+1)

    pot_var, non_pot_var = df_pot[data.columns[i]], df_non_pot[data.columns[i]]

    sns.kdeplot(data=pot_var,color='green')

    sns.kdeplot(data=non_pot_var, color='red')


In [8]: #Feature correlation

corr_heat = sns.heatmap(data.corr(),annot=True)


In [9]: # Outlier detection

fig, axs = plt.subplots(3,3)

for i in range(3):

    plt.subplot(3,1,i+1)

    sns.boxplot(x=data[data.columns[i]])


In [10]: fig, axs = plt.subplots(3,3)

for i in range(3):

    plt.subplot(3,1,i+1)

    sns.boxplot(x=data[data.columns[i+3]])


In [11]: fig, axs = plt.subplots(3,3)

for i in range(3):

    plt.subplot(3,1,i+1)

    sns.boxplot(x=data[data.columns[i+6]])


In [12]: # Distribution of dependent variable.

data['Potability'].value_counts()


Out[12]:

In [13]: # Separate missing data from complete data for splitting before preprocessing.

complete_data = data.dropna()

incomplete_data = data[data.isnull().any(axis=1)]


In [14]: # SPlit data

X, y = complete_data.loc[:, complete_data.columns != 'Potability'], complete_data['Potability']

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=seed)

X_train.head()


Out[14]:

In [15]: # Create new data frame with complete trainin examples and data points with missing values.

X_train['Potability'] = y_train

new_df = pd.concat([X_train,incomplete_data])



# Display percentage of missing values

print('Percentage of missing values for each variable:')

new_df.isnull().sum()/new_df.shape[0] * 100


Out[15]:

In [16]: #Replace null values based on the group/sample mean



new_df['ph']= new_df['ph'].fillna(new_df.groupby(['Potability'])['ph'].transform('mean'))

new_df['Sulfate']= new_df['Sulfate'].fillna(new_df.groupby(['Potability'])['Sulfate'].transform('mean'))

new_df['Trihalomethanes']=new_df['Trihalomethanes'].fillna(new_df.groupby(['Potability'])['Trihalomethanes'].transform('mean'))



print('Number of missing values:')

new_df.isnull().sum()


Out[16]:

In [17]: # Declare new training data. 



new_X_train, new_y_train = new_df.loc[:, new_df.columns != 'Potability'], new_df['Potability']

print('Training Data Class Distribution:')

print(new_y_train.value_counts(),'\n')

print('Test Data Class Distribution:')

print(y_test.value_counts())


In [18]: # Augment data with resampling and plot new distribution of points.

from sklearn.utils import resample, shuffle

from imblearn.over_sampling import SVMSMOTE

from imblearn.over_sampling import BorderlineSMOTE

from imblearn.under_sampling import NearMiss


In [19]: sm = SVMSMOTE(random_state=seed)

X_res, y_res = sm.fit_resample(new_X_train,new_y_train)


In [20]: y_res.value_counts()


Out[20]:

In [21]: import warnings

warnings.filterwarnings('ignore')

from sklearn.model_selection import RandomizedSearchCV

from sklearn.ensemble import RandomForestClassifier

from imblearn.ensemble import BalancedRandomForestClassifier

import xgboost as xgb


In [22]: #Build models

xg_model = xgb.XGBClassifier(use_label_encoder=False,random_state=seed)

rf_model = RandomForestClassifier(random_state=seed)



# XGboost Cross-Validation

param_grid = {'n_estimators':[50,100,200,250,300,500,700]}

grid_xg = RandomizedSearchCV(xg_model, param_grid, scoring='roc_auc',n_jobs=-1,random_state=seed)



# Random Forest Cross-Validation

params_rf = {'n_estimators':[100,200,250,300,500,700]}

grid_rf = RandomizedSearchCV(rf_model, params_rf,scoring='roc_auc',n_jobs=-1, random_state=seed)


In [23]: grid_xg.fit(new_X_train,new_y_train)

grid_rf.fit(new_X_train,new_y_train)


Out[23]:

In [24]: #Get best CV score and best parameters

print('AUC score for XGboost:\n{}'.format(grid_xg.best_score_),grid_xg.best_params_)

print('\nAUC score for Random Forest:\n{}'.format(grid_rf.best_score_),grid_rf.best_params_)


In [25]: # Import metrics object from helpers file.

from helpers import metrics


In [26]: # Build optimal model
final_model = RandomForestClassifier(random_state=seed).fit(new_X_train,new_y_train)



# Make our prediction on the test data

prediction = final_model.predict(X_test)

probabilities = final_model.predict_proba(X_test)


In [27]: # Fit metrics object with probabilities and actual predicted class.

results = metrics(y_test, prediction, probabilities)


In [28]: results.report()


In [29]: results.roc()


In [30]: results.confusion()


In [31]: feature_importance = final_model.feature_importances_

names = final_model.feature_names_in_



feature_importance, names = zip(*sorted(zip(feature_importance, names),reverse=True))



fig, ax = plt.subplots()

ax.barh(range(len(names)), feature_importance)

ax.set_yticks(range(len(names)), labels=names)



ax.invert_yaxis()  # labels read top-to-bottom
ax.set_xlabel('Feature Percentage')

ax.set_title('Feature Explanation of Potability')


Out[31]:

▸ RandomizedSearchCV

▸ estimator: RandomForestClassifier

▸ RandomForestClassifier

https://www.kaggle.com/datasets/adityakadiwal/water-potability?datasetId=1292407&sortBy=voteCount

