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1 Problem Statement

Ever since computers were created, we have been trying to find ways for them to automate difficult
tasks and make our lives easier. Things like finding the shortest path between two places, drawing a
three-dimensional floor plan for a new skyscraper, or even doing complex mathematical calculations
in seconds; have become as trivial as just opening your phone or laptop and asking a question. One
of such questions that came up during the late 1960s was: If we give eyes to a computer, would
it know what it was looking at? Of course the answer was no, but then the goal became to find
a way to teach it how to do it. This was the birth of the scientific field of computer vision. This
discipline deals with analyzing, processing, and understanding visual data in a way which allows a
computer to see an image or video, and be able to extract information and make conclusions from
it. Using X-ray scans for automatic diagnosis of lung diseases in patients, or collecting quantitive
information about the traffic flow of a city using only a camera; are some notable applications of
this that are currently in use.

After pondering the applications of such computational advancements while doing some bird
watching near my home I started to wonder if there could be a way to use computer vision to sim-
plify the process of identifying our feathered friends. I wanted to develop an image classification
model that by training it using labeled pictures of different types of birds; if given new input, it
could correctly identify which species the new birds belonged to in a quick and efficient way. This
process would save me so much time of manual classification of hundreds of pictures of birds in
my camera that I just haven’t had the time to sit down and check. Fellow local scientists and bird
watching enthusiasts have also expressed excitement over the creation of such a model. Further-
more, out in the field spotting a bird could last only a couple of seconds before it flies away, so
any time saved on identifying the species could be used on monitoring other behaviors or collecting
scientific information about such a sight. For this a real time video classifier could be used in order
to detect and classify the bird before it flies away, although such a project would be a little more
advanced than a simple image classifier.

Using the different algorithms learned in class, there is a number of ways to approach the de-
velopment of our bird species identifier. By means of dimensionality reduction, density estimation,
traditional classification algorithms, and deep learning; we will build and compare different image
classification models until we find the most accurate and efficient approach to correctly identify
the species of each bird. We will evaluate each model with a number of performance variables and
analyze their behavior for this specific classification task. Finally, the best model will be selected
and further scalability and functionality implementations will be discussed.

2 Data Source

The original dataset consists of pictures from more than 400 different species of birds. This in-
cludes 58388 training images, 2000 test images, and 2000 validation images. When it comes to the
images themselves; each picture is a 224 x 224 x 3 RGB image in jpg format, and contains only
one bird per image. The bird usually takes more than 50% of the pixels in the image making it
convenient for training purposes. All images were collected from the BIRDS 400 dataset found
at https://www.kaggle.com/gpiosenka/100-bird-species. One important thing to note is that 85%
of the images are from the male of the species and only 15% are female, this is due to the male



having more colors and features that make them more easily recognizible. Due to the big size of the
data 7 different species were selected in order to save time and reduce complexity when implement-
ing each approach for our classifier. More species could be added whenever an optimal classifier
is selected. Figure 1 shows the selected species that will be used to prototype and test each classifier:
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(d) Annas Hummingbird  (e) Scarlet Macaw

tegrapher b}

(a) Black Broadbill

(f) Ground Hornbill (g) Touchan

Figure 1: Selected Species

The following distribution of pictures applies for each species selected:
e Training: 120

e Validation: 5

e Testing: 5

The total distribution ends up being 840 for training, 35 for validation, and 35 for testing. 120
images per species may not be enough to prevent overfitting in our model leading to poor general-
ization results. This will need to be addressed in the methodology.

3 Methodology

3.1 Data Pre-Processing

For efficiency purposes each RGB image was resized to be 64x64x3 pixels, they were then vectorized
into the form 1x12,288 and collected into three different matrices for each category: training, vali-
dation, and testing. Each row of this matrices represents a singular picture, and each column the
pixel values. Each matrix was labeled depending on the species it came from and assembled into
dictionaries, where the key-value pair was the species name and the specific matrix respectively.
It is important to note that the images were not transformed into grayscale due to color being



such an important feature when classifying birds. Furthermore, the disparity between male and
female specimens was determined that while it would probably introduce some level of error into
our model, in this case it would be used to test the generalization to different cases when performing
the classification. At least until more data is available.

One area of concern was that due to the high variability between picture design, 120 images per
species might not be good enough to capture the complexity of poses and states that the bird could
present. This would cause our model to overfit and not generalize well when testing new kinds of
pictures. To solve this problem, slight data augmentation was implemented to increase the number
of samples we had. In order to maintain model efficiency while testing different approaches, only
rotation and flipping were implemented in order to multiply our training images from 840 samples
to 5,880, or 840 samples per species. Operations like cropping, contrast, translation, and more
could be used if more training data is needed for future applications.

3.2 Dimensionality Reduction

The first approach implements a dimensionality reduction technique to find the most representative
combination of features for each species and then compare it to a test picture to make a classi-
fication. We start by defining our training images as a MxN matrix X, where M represents the
number of samples and N the number of pixels as stated in the pre-processing step. To better
understand the math behind this technique, it is important to know the following concepts:

1. The theorem for singular value decomposition states that for a rectangular matrix A: Apr.ny =
UnizviSyanVnen. Where U and V are orthonormal, U represents the left singular vectors,
S the singular values, and V7T the right singular vectors of our matrix.

2. We also know that for a NxN matrix W, there exists an eigenvector u if:
Wu = du

Where X is a scalar that represents the eigenvalue and u the eigenvalue of W.

The basic Idea of this approach is that for each species of bird, we will find the first K principal
components that encompasses it’s most representative features by means of singular value decom-
position. Using this “Eigenbirds” we will then find the projection residual between each test image
and all the selected K principal components for each species. The test image will be labeled as the
type of bird that produces the lowest residual in this equation.

1. The first step to perform this eigendecomposition is to center our data. To do this we find
the mean image u for our training data X and use it to center all of our training images by
subtracting this value from each row. This is necessary in order to better perform the change
of basis into the eigenspace. We will also divide all the data by 255 to scale for computational
efficiency. The following operation can be shown as:



X = (X — p)/255

If we reshape the mean to it’s original dimensions and plot it as an image for each species we
get the following (Figure 2):

) Black Broadbill b) Flamingo ) Bald Eagle ) Annas Hummingbird ) Scarlet Macaw

Figure 2: Mean Image for each species training pictures.

2. The eigendecomposition of our centered data can be performed in one of two ways, the first
is by finding the eigenvectors, and values of the covariance matrix of X which can be defined
as: C = XX this symmetric matrix can be diagonalized in the form:

C=ULU"

Where U is a matrix of eigenvectors and L is a diagonal matrix with eigenvalues \;. The
second method that can be used is to apply the SVD theorem directly into the transpose of
our rectangular matrix X: X7 = USVT, where U would represent our eigenvectors and S
the square root of the eigenvalues. The relationship of both approaches can be confirmed by
plugging the result of the SVD into our covariance matrix:

=Usvl s c=vusvlvsuT =us*u”

Giving us the diagonalized matrix that we got at the beginning of this step. If we were to
grab the first principal component for the first 5 species and visualize it, we would get the
following result (figure 3):

(a) Black Broadbill (b) Flamingo (c) Bald Eagle (d) Annas Hummingbird  (e) Scarlet Macaw

Figure 3: 1st principal component for the first 5 species visualized as a picture.

These principal components represent the most important features for each species of birds
and will be used to perform our classification, due to only being the first of K components



Variance percentage

each one of this pictures represents a very small amount of variance, only very fine details
and combinations of color values con be seen in each image. it may appear random but when
put together with the rest of principal components we get a pretty good estimate of the most
significant features for each species.

. Finally, for each test image y; and each species j; we find the projection residual by:

Zi = (yi — pj)/255
ProjectionResidual = ||Z; — UjUJTZiH%

Where Z; is the centered vector for image y; using the mean p; of species j and U; represents
the first K principal components for species j. After looping through each test image-species
combination, the result will be a MxK matrix where each row represents one of M test images
and each column the residual when compared to all K species. All is left to do is to find the
minimum residual in each row, and that will give us the predicted species for each test image.

The question remains on choosing how many principal components K to use when calculating
our projection residual. This can be addressed by plotting the amount of variance that each prin-
cipal component explains in the data and choosing a cutoff point where the amount of explained
variance becomes negligible. In this case, after performing SVD for the first 5 species of birds and
getting the respective eigenvalues they were plotted with respect to each eigenvector in figure 4 to
show the explained variance of each principal components for each species.
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All 5 plots show a similar distribution of the explained variance per eigenbird for each species.
In each graph the amount of variance seems to level off around the 180 - 200 mark, meaning that
this range of values serve as a good cutoff to separate the most meaningful features for each bird.
In this case a reasonable value for K would be to select the first 180 components. Therefore, by
implementing our approach using this value of K and calculating the residuals for each test image,
we can classify each sample simply by selecting the lowest value when compared to each species.
The time it took for the model to train and run from image input to image classification was taking
into account as a measure of model efficiency. It took 3475.41 seconds to complete or around 57.92
minutes. The following were the results:

precision recall fl-score  support

BLACK BROADBILL 2.380 9.80 2.80@ 5
FLAMINGO 1.80 1.80 1.80 5

BALD EAGLE 8.383 1.88 8.91 5
ANNAS HUMMIMNGBIRD a.62 1.80 e.77 5
SCARLET MACAW 1.00 1.80 1.80 5
TOUCHAN 1.08 1.88 1.0 5

GROUND HORNBILL 1.00 9.20 .33 5
accuracy 8.86 35

macro avg 8.89 B.86 2.83 35
weighted avg 8.89 B._86 6.83 35

(a) Classification Metrics
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Figure 5: Dimensionality Reduction Evaluation.

A pretty decent result given the high number of labels and the low amount of training images.

3.3 Density Estimation

Density estimation is another method that can be used to build a bird classifier. This method is
an unsupervised learning technique that is used to find where similar data clusters together due
to having similar features. Clustering is a technique that takes advantage of density estimation



through different dimensions for multivariate data. In this case, a non-parametric approach called
Kmeans clustering will be used on our training images to find which ones are the most similar
to each other, in effect creating D clusters of images that based on the majority label inside the
cluster, it will be labeled as belonging to a specific type of bird. Using a new test image y, we can
predict to which cluster is most likely to belong to and classify y as the label assigned to the cluster.

The methodology itself consists of using the pre-processed data to build our training matrix A
where each row represents an image vector, and each column represents the pixel values of said
vector for all the species. The entire matrix was then scaled by 255 to bound our data between
0 and 1. The training images were passed into our Kmeans algorithm which calculates C' cluster
centroids randomly, and assigns the closes data points to each centroid. Each data point is then
labeled based on which centroid is closest to. The centroids are then recalculated as the average of
all the labeled data points in their respective cluster, and the process then repeats iteratively until
there is no change. The dimensions for each data point will be the pixel values for each one of the
pictures. The number of clusters will be selected by plotting the sum of all the square distances
of each data point to their respective cluster centroid using different values for number of clusters.
We do this because in theory the ideal number to use for the cluster parameter is the one that
reduces the distance between each data point to their respective centroid without overfitting the
data, this validation is popularly known as the elbow method. Figure 6 shows us the total sum of
squares distances based on a range of 1 to 800 clusters used in our model.
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Figure 6: Total sum of squares distances to centroids.

Our plot does not seem to have a clear elbow where the number of clusters seems to have a
big reduction on the distance to each centroid. This might mean that our algorithm is failing to
capture the relationship between the images well. One possible reason might be due to our data
having a non-linear relationship that kmeans can’t account for. Another might be due to the curse
of dimensionality; which explains that as the number of dimensions in our data increases, Euclidian
distance does not become a good metric to perform the separation of the data. Nonetheless, Let’s
select an arbitrary middle value in our plot and evaluate our test data to see the results. We



perform our approach in order to classify our test data using Kmeans and a value of 150 for C'. The
model training and classification operation took aproximately 622 seconds and gave the following
result:

precision recall fil-score  support

BLACK YELLOW BROADBILL g.ea a.e8 e.ee 5
FLAMINGO B.ca B.68 8.55 5

BALD EAGLE 1.e8 1.e8 1.88 5

ANNAS HUMMINGBIRD 8.25 @.4g 8.31 5
SCARLET MACAW 0.67 .86 .73 5

TOUCHAN 0.67 a.86 a8.73 5

ABYSSINIAN GROUND HORNBILL ©.58 B.28 a8.29 5
accuracy 8.54 35

macro avg 8.51 8.54 .51 35

waighted avg B.51 B8.54 8.51 35

(a) Classification Metrics
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Figure 7: Density Estimation results.

A much lower accuracy score compared to other approaches, some potential fixes to increase this
value might be to experiment with other clustering approaches that better capture the non-linear
nature of the data or applying dimensionality reduction to curve the curse of dimensionality.

3.4 Classification

It is intuitive that some of the first approaches to try when making an image classifier would
be to use some of the classic algorithms for supervised learning classification like SVM, Kernel
SVM, K-nearest neighbors, logistics regression, and more. In this section we will implement the
aforementioned approaches using our image data. Each bird classifier will be evaluated based
on accuracy as well as being compared to all the others to decide which one is the best. K-
nearest neighbors and kernel Support vector machines will serve as our non-linear classifiers, while
linear SVM and logistic regression will try to capture the linear relationship between the data.
All images will go through the same pre-processing steps as specified in the respective section in



the methodology. Furthermore, our data will also be subjected to dimensionality reduction using
principal component analysis due to the high number of pixel features that could cause overfitting
when making our classifications. A kernelized implementation of PCA will also be performed in the
data to try to capture the variance in the data in a non-linear subspace; it will then be evaluated
on each supervised learning algorithm separately. The optimal parameters for each model will be
found by performing 5 fold cross-validation with the data, and finally the best scoring combination
of dimensionality reduction and classification model with optimal parameters will be evaluated in
the test data. The highest scores of each model with it’s optimal parameters from applying a grid
search 5-fold cross-validation step are as follows:

PCA KPCA
Model Accuracy Accuracy
K-NN 0.36 0.46
Logistic Re. 0.51 0.53
Linear SVM 0.56 0.56
Kernel SVM 0.70 0.68

Table 1: Model evaluations

Due to one fifth of our training data being used for validation purposes the scores might be
lower than when the whole training data is used when building our best model to classify our test
set. Out of all the models evaluated Kernel SVM proved to be the best when combined with a
linear dimensionality reduction technique. This is due to the non-linear nature of this approach
being able to capture the complexity of the different patterns present in each image better. KNN
while non-linear, suffers from the curse of dimensionality as Kmeans did giving it a much lower
accuracy score than the other methods. Logistic regression and linear SVM had very similar scores
when trying to capture the linear relationship in the data. Using our best performing approach
now we can evaluate or test data to get the following classification metrics:

BLACK BROADEILL

FLAMINGO
precision recall fl-score  support
BALD EAGLE
BLACK BROADBILL a.75 8.68 8.67 5
FLAMINGO 9.83 1.00 8.91 5 NAS HUMMINGEIRD
BALD EAGLE 1.ee 1.8 1.08 5
ANMAS HUMMINGBIRD .83 1.00 .91 5 SCARLET MACAW
SCARLET MACAW 1.ee 1.8 1.08 5
TOUCHAN 1.ee 1.8 1.08 5 TOUCHAN
GROUMND HORMBILL 1.ee ©.80 e.89 5
ST 0.91 35 GROUND HORMEBILL
macro avg 8.92 @8.91 8.91 35 = & i iy = i
weighted avg 0.92 .91 0.91 35 2 g £ = = =
= = & ¢ 5 £
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(a) Classification Metrics b) Confusion Matrix

Figure 8: SVC{C = 4, kernel = rbf, gamma = scale, random _state = 2}

So far, kernel SVM has proven to be the best method to build our bird identifier. The time it

10



took to train and predict ended up being 399 seconds; much faster than our second-best performing
approach as well.

3.5 Deep Learning

Our final approach consists of diving into the field of deep learning for image classification. Deep
learning is a subfield of machine learning that specializes on reproducing the way the human brain
thinks to solve certain problems. It does this by using artificial neural networks; a mathemati-
cal representation of a composition of neurons signaling to each other. This field has proven to
have an endless number of real-life applications when it comes to using data to gain insight on an
input. In this case, we will implement a variation of this approach called a convolutional neural
network. This algorithm is specifically designed to deal with the high dimensionality that images
present. It is important to note that for an 64x64x3 image the number of dimensions that each
algorithm has to take into account is 12,288, combined with more than 5,880 distinct training
images we get more than 72,000,000 distinct values that need to be taken into account. Perform-
ing the necessary computations to learn from the data becomes a tedious and long task to do in
a normal computer. CNNs solve this issue by taking advantage of two ideas: Convolutions and
subsampling. Convolution is the process of extracting the high level features of an image through
the use of a filter, for each feature we perform subsampling to reduce the spatial size of the con-
volution to reduce the computational power necessary for the algorithm to work. We alternate
between these two methods in the form of layers until we come out with an output that has been
trained to understand the features of each species. this output will be flattened into a vector and
fed into a dense traditional feed forward neural network to make our classification. Due to this
small amount of training images, we might have a tendency to overfit to our training data and
fail to generalize properly when validating our model. To prevent this, some neurons will be turn
off randomly during the training process to prevent the network becoming too dependent in the
data. This concept is known as dropout and is used as a regularization technique when using CNNs.

For this approach the training data was reshaped into a 4-dimensional matrix of shape Mx64x64x3
to serve as an input to our network. One-hot encoding was performed to each of our training labels
as well to transform it into a 1-dimensional vector which combined between all the training images
gives us a matrix of size MxK, where each row represents the label vector of each training image
and each column the species that it belongs to. For our network, the implementation was done
using the Keras library to build our network sequentially; each layer consisted of a convolution
step, a leaky relu activation function to capture non-linear relationships, and a max pooling step
that serves as our subsampling for that layer. Dropout was implemented as well after each layer
to prevent overfitting and finally a dense layer was added to input our flatten data and make our
classification. The summary of the network can be seen below (figure 9):
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Model: "seguential”

Layer (type) Qutput Shape
comizd (Com2D) | (Moee, 64, 64, 32) | 696
leaky_re_lu (LeakyRellU) (None, &4, 64, 32)

max_pooling?d (MaxPooling2D (MNone, 32, 32, 32)

)

dropout (Dropout) (Nene, 32, 32, 32)

comv2d_1 (ConvZD) (None, 32, 32, 64)

leaky_re_lu_1 (LeakyRell) (None, 32, 32, 64)

max_pooling?d_1 (MaxPooling (MNone, 16, 16, 64)

)
dropout_1 {Dropout) (Nene, 16, 16, 64)
corv2d_2 (ConvzD) (None, 16, 16, 128)

leaky_re_lu_2 (LeakyRell) (None, 16, 16, 128)

max_pooling2d 2 (MaxPooling (Mone, &, 8, 123)

D)

dropout_2 {Dropout) (None, 8, 8, 128)
flatten {(Flatten) (None, 8192)
dense (Dense) (None, 128)

leaky_re_lu_3 (LeakyRell) (None, 123)
dropout_3 (Dropout) (None, 128)

denze_1 (Dense) (None, 7)

18456

73856

a

laag7ed

@

g

a3

Total params: 1,142,855
Trainable params: 1,142,855
Mon-trainable params: @

Figure 9: CNN Architecture.

A batch size of 64 was specified and the network was set up to run for 20 epochs for training
purposes. The network was set up to calculate accuracy as well as loss of the network on both
the validation set and the training data at each epoch. The results of this process were saved
and plotted against the number of epochs to visualize the learning process as well as to check for

overfitting in our model. Figure 10 shows the result of the previous step:
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Figure 10: CNN validation by epoch

These plots show us good performance and little overfitting. Using our trained network, we can
now evaluate our test data and see the results in figure 11:

Test loss: ©.824184327572584152 BLACK BROADEILL
Test accuracy: ©.9714285731315613
FLAMINGO
precision recall fl-score  support
BALD EAGLE
BLACK BROADBILL @.83 1.08 8.91 5
FLAMINGO 1.08 1.008 1.0 5
BALD EAGLE 1.00 1.80 1.00 5 MAS HUMMINGBIRD
ANNAS HUMMINGBIRD 1.09 1.00 1.08 5
SCARLET MACAW 1.80 1.80 1.80 5 SCARLET MACAW
TOUCHAN 1.00 1.80 1.00 5
GROUND HORMBILL 1.08 .88 .89 5 TOUCHAN
accuracy 037 32 GROUND HORNBILL
macro avg 2.98 9.97 8.97 35
weighted avg 8.98 .97 8.97 35

i o W o = =

2 o 3 £ I 2
()

] = =< = = ]

b) Confusion Matrix

(a) Classification Metrics

Figure 11: CNN results on test data.

This implementation took 675 seconds to train and make our prediction. While longer than our
next best approach, this method proved to be the most accurate when building our bird classifier
between all the different methods presented in our experiments. Even with the lack of training data
this approach was able to generalize extremely well when presented with a new test set independent
of our training samples.
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4 Evaluation and Final Results

Out of all approaches presented the results of the most optimal technique in each category can be
summarized in the following table:

Model Accuracy Time(s)

Eigenbirds 0.86 3475.41
Kmeans 0.54 622
PCA/KSVM 0.91 399
CNN 0.97 675

Table 2: Overrall results.

The time column is in seconds and it encompasses both training time and performing the classi-
fication on the testing set. Convolutional neural networks proved to be the most accurate approach
and the best one in capturing the complex differences of different pictures of species of birds. PCA
combined with a kernel SVM proved to be the fastest by almost half, becoming a good second
option to perform in case efficiency is the priority when building the classifier.

Using our most optimal model we can now use it on a bigger set of data in order to identify
as many species as possible. We will use a CNN in order to classify between 30 different species
of birds for our final test. The model will be trained using the same methodology applied on the
prototyping stage. Data augmentation will be used in the data in order to increase our training
samples to be around 1080 pictures per species, the number of pictures used for validation and test-
ing will remain the same as in the prototyping stage. Using our new data we can train, validate,
and test our model to get the results shown in figure 12 and 13. A picture example of each of the
30 species used can be seen on appendix A. Even though we increased the number of species to 30,
the model still performed extremely well with an accuracy of 93%.

This implementation proved to be robust even with the small sample of training data used to
build our model. The time for training and classification increased only by around 3000 seconds
or 50 minutes, but given the scope of the data this could be considered an acceptable efficiency.
Further applications and scalability could be applied to this method as well. More species could be
added and other data augmentation techniques could be used in order to compensate with the low
number of samples for our training images. A real time video classifier could also be implemented
by checking frame by frame and classifying the birds present in the video using our model.

A more specific look into the classification matrix of our model can be seen below:
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Test loss: B.3134957551956177
Test accuracy: @.9266666769931334

3812.4324823434677

precision recall fl-score

BLACK BROADEILL 1.80 1.848 1.80
FLAMINGD 1.80 1.80 1.88

BALD EAGLE 1.88 1.88 1.88

ANNAS HUMMINGEBIRD 1.88 1.868 1.88
SCARLET MACAW 1.88 1.808 1.88
TOUCHARN 1.88 1.808 1.88

GROUND HORMEBILL 1.848 8,48 8.57
CROWMED CRANE 8.83 1.80 6.91
AFRICAN FIREFINCH 1.80 1.84 1.80
ALEXANDRINE PARAKEET 1.848 1.640 1.88
ABBOTTS BABBLER 1.88 B.868 B.89
ABBOTTS BOOBY 1.88 B.88 B.89
EMERALD CUCKOOD 1.88 1.88 1.88
OYSTER CATCHER 8.80 8.808 8.80
ALBERTS TOWHEE 8.83 1.80 8.91
BLACK SWAN 8.83 1.840 6.91

EMU 8.83 1.84 8.91

EURASIAN MAGPIE 1.848 1.640 1.80
KIWI 8.83 1.848 8.91

MALLARD DUCK 1.88 1.88 1.88
MANDRIN DUCK 1.868 1.86 1.88
OCELLATED TURKEY e.71 1.808 8.83
OSPREY 1.88 8.68 8.75

PEACOCK 1.80 1.80 1.80

PEREGRIME FALCON 8.67 8.80 8.73
QUETZAL 1.848 1.840 1.88

HONEY CREEPER 8.83 1.84 8.91
ROCK DOVE 1.88 B.88 B.89

BLUE MAGPIE 1.88 B.88 B.89
VENEZUELIAN TROUPIAL 1.88 1.808 1.88
accuracy 6.93

macrg avg 8.94 8.93 6.92
weighted avg 8.94 8.93 8.92

Figure 12: CNN results on test data.
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Figure 13: CNN results on test data.
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In conclusion there exists many different approaches that can be implemented for image classi-
fication, it is a matter of finding the right combinations of tools and methodologies to accomplish
the specific task that best would solve your problem. In this case we were able to build a quick and
efficient bird species identifier implementing several distinct ideas that provided us with a range of
different results, some better than others. Overrall the exploration of these methodologies expresses
that there are many unique options for coming to the same end result, it is only a matter of finding
the one that fits the best.
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Appendix A 30 Evaluated Species

%
e el

(b) Flamingo (c) Bald Eagle (d) Annas Hummingbird  (e) Scarlet Macaw

e
ArTa iy

(f) Ground Hornbill (g) Touchan (h) Crowned Crane (i) Firefinch (j) Alexandrine parakeet

e

(k) Abbotts Babler (1) Abbotts Booby (m) Emerald Cuckoo (n) Oyster Catcher (o) Alberts Towhee

Figure 14: Selected Species part 1
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(f) Mandrin Duck (g) Ocellated Turkey

(k) Quetzal (1) Honey Creeper (m) Dove (n) Blue Magpie (o) Troupial

Figure 15: Selected Species part 2
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